Back to Search Start Over

Using bifactor models to identify faking on Big Five questionnaires.

Authors :
Hendy, Nhung
Krammer, Georg
Schermer, Julie Aitken
Biderman, Michael D.
Source :
International Journal of Selection & Assessment. Mar2021, Vol. 29 Issue 1, p81-99. 19p. 1 Diagram, 9 Charts.
Publication Year :
2021

Abstract

To identify faking, bifactor models were applied to Big Five personality data in three studies of laboratory and applicant samples using within‐subjects designs. The models were applied to homogenous data sets from separate honest, instructed faking, applicant conditions, and to simulated applicant data sets containing random individual responses from honest and faking conditions. Factor scores from the general factor in a bifactor model were found to be most highly related to response condition in both types of data sets. Domain factor scores from the faking conditions were found less affected by faking in measurement of Big Five domains than summated scale scores across studies. We conclude that bifactor models are efficacious in assessing the Big Five domains while controlling for faking. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0965075X
Volume :
29
Issue :
1
Database :
Academic Search Index
Journal :
International Journal of Selection & Assessment
Publication Type :
Academic Journal
Accession number :
148801281
Full Text :
https://doi.org/10.1111/ijsa.12316