Back to Search Start Over

Newly identified Jurassic–Cretaceous migmatites in the Liaodong Peninsula: unravelling a Mesozoic anatectic event related to the lithospheric thinning of the North China Craton.

Authors :
Liu, Jin
Zhang, Jian
Yin, Chang-Qing
Cheng, Chang-Quan
Qian, Jia-Hui
Zhao, Chen
Chen, Ying
Wang, Xiao
Hsia, Jui-Yen
Source :
Geological Magazine. Mar2021, Vol. 158 Issue 3, p425-441. 17p.
Publication Year :
2021

Abstract

A suite of Jurassic–Cretaceous migmatites was newly identified in the Liaodong Peninsula of the eastern North China Craton (NCC). Anatexis is commonly associated with crustal thickening. However, the newly identified migmatites were formed during strong lithospheric thinning accompanied by voluminous magmatism and intense deformation. Field investigations show that the migmatites are spatially associated with low-angle detachment faults. Numerous leucosomes occur either as isolated lenses or thin layers (dykes), parallel to or cross-cutting the foliation. Peritectic minerals such as titanite and sillimanite are distributed mainly along the boundaries of reactant minerals or are accumulated along the foliation. Most zircons show distinct core–rim structures, and the rims have low Th/U ratios (0.01–0.24). Zircon U–Pb dating results indicate that the protoliths of the migmatites were either the Late Triassic (224–221 Ma) diorites or metasedimentary rocks deposited sometime after c. 1857 Ma. The zircon overgrowth rims record crystallization ages of 173–161 Ma and 125 Ma, which represent the formation time of leucosomes. These ages are consistent with those reported magmatic events in the Liaodong Peninsula and surrounding areas. The leucosomes indicate a strong anatectic event during the Jurassic–Cretaceous period. Partial melting occurred through the breakdown of muscovite and biotite with the presence of water-rich fluid under a thermal anomaly regime. The possible mechanism that caused the 173–161 Ma and 125 Ma anatectic events was intimately related to the regional crustal extension during the lithospheric thinning of the NCC. Meanwhile, the newly generated melts further weakened the rigidity of the crust and enhanced the extension. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00167568
Volume :
158
Issue :
3
Database :
Academic Search Index
Journal :
Geological Magazine
Publication Type :
Academic Journal
Accession number :
148752635
Full Text :
https://doi.org/10.1017/S0016756820000552