Back to Search Start Over

Ultrasound-Mediated Microbubble Cavitation Transiently Reverses Acute Hindlimb Tissue Ischemia through Augmentation of Microcirculation Perfusion via the eNOS/NO Pathway.

Authors :
Qiu, Shifeng
Li, Danxia
Wang, Yuegang
Xiu, Jiancheng
Lyu, Chuangye
Kutty, Shelby
Zha, Daogang
Wu, Juefei
Source :
Ultrasound in Medicine & Biology. Apr2021, Vol. 47 Issue 4, p1014-1023. 10p.
Publication Year :
2021

Abstract

Ultrasound-mediated microbubble cavitation improves perfusion in chronic limb and myocardial ischemia. The purpose of this study was to determine the effects of ultrasound-mediated microbubble cavitation in acute limb ischemia and investigate the mechanism of action. The animal with acute hindlimb ischemia was established using male Sprague-Dawley rats. The rats were randomly divided into three groups: intermittent high-mechanical-index ultrasound pulses combined with microbubbles (ultrasound [US] + MB group), US alone (US group) and MB alone (MB group). Both hindlimbs were treated for 10 min. Contrast ultrasound perfusion imaging of both hindlimbs was performed immediately and 5, 10, 15, 20 and 25 min after treatment. The role of the nitric oxide (NO) pathway in increasing blood flow in acutely ischemic tissue was evaluated by inhibiting endothelial nitric oxide synthase (eNOS) with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME). In the US + MB group, microvascular blood volume and microvascular blood flow of the ischemic hindlimb were significantly increased after treatment (both p values <0.05), while the microvascular flux rate (β) increased, but not significantly (p > 0.05). The increases were observed immediately after treatment, and had dissipated by 25 min. Changes in the US and MB groups were minimal. Inhibitory studies indicated cavitation increased phospho-eNOS concentration in ischemic hindlimb muscle tissue, and the increase was significantly inhibited by L-NAME (p < 0.05). Ultrasound-mediated microbubble cavitation transiently increases local perfusion in acutely ischemic tissue, mainly by improving microcirculatory perfusion. The eNOS/NO signaling pathway appears to be an important mediator of the effect. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03015629
Volume :
47
Issue :
4
Database :
Academic Search Index
Journal :
Ultrasound in Medicine & Biology
Publication Type :
Academic Journal
Accession number :
148731750
Full Text :
https://doi.org/10.1016/j.ultrasmedbio.2020.12.028