Back to Search Start Over

Wind measurement comparison of Doppler lidar with wind cup and L band sounding radar.

Authors :
Zizhong Zhou
Zhichao Bu
Source :
Atmospheric Measurement Techniques Discussions. 2/8/2021, p1-17. 17p.
Publication Year :
2021

Abstract

Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as vertical wind field measurement. In order to verify the accuracy of the Doppler wind lidar, the major domestic Doppler wind lidar manufacturers were organized to compare the Minute-level average wind speed and direction data measured by the lidars to which measured by meteorological gradient tower and L band Sounding radar in Shenzhen and Zhangjiakou, respectively. The result of comparison with the wind cup on the meteorological gradient tower is in good agreement, the correlation coefficient of wind speed is close to or higher than 90%, and the maximum standard deviation of the wind direction is about 7 ° except the inflection point. When the L-band sounding radar is used as a reference for the lidar equipment which joint the comparison. The system difference and standard deviation of daily wind speed and direction vary greatly, and the reliability is poor. At the same time, it was founded that compared with the 1-minute average data, when the 10-minute average data were used for comparison, the system deviation and standard deviation were reduced. That mean the results were more stable and reliable. The comparison results show that the technical indicators of several domestic lidar equipment are equivalent to windcube indicators made by Vaisala and complying with the World Meteorological Organization's requirements for the Coherent Doppler Lidar indicator for near-term weather forecasts. It shows the lidars are reliable to obtain wind speed and direction parameters at different altitudes in real time. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18678610
Database :
Academic Search Index
Journal :
Atmospheric Measurement Techniques Discussions
Publication Type :
Academic Journal
Accession number :
148644684
Full Text :
https://doi.org/10.5194/amt-2020-516