Back to Search Start Over

A Chemosensory Protein Detects Antifeedant in Locust (Locusta migratoria).

Authors :
Jiang, Xingcong
Xu, Haozhi
Zheng, Nan
Yin, Xuewei
Zhang, Long
Source :
Insects (2075-4450). Jan2021, Vol. 12 Issue 1, p1-1. 1p.
Publication Year :
2021

Abstract

Simple Summary: Chemosensory proteins (CSPs) in insects are small compact polypeptides which can bind and carry hydrophobic semiochemicals. CSPs distribute in many organs of insect and have multiple functions. In chemosensory system, CSPs are thought to be responsible for detecting chemical signals from the environment. In this study, we proved that LmigCSPIII, a CSP in Locusta migratoria is involved in detecting an antifeedant. LmigCSPIII exhibits high binding affinity to α-amylcinnamaldehyde, a natural compound from non-host plant which was subsequently demonstrated to be an effective antifeedant. Knockdown of LmigCSPIII gene by RNA interference showed reduced sensitivity to α-amylcinnamaldehyde but showed no changes in their physiological development or food consumption. Our findings provided new evidence that CSPs can detect antifeedant in chemosensory system of insects. Chemosensory system is vitally important for animals to select food. Antifeedants that herbivores encounter can interfere with feeding behavior and exert physiological effects. Few studies have assessed the molecular mechanisms underlying the chemoreception of antifeedants. In this study, we demonstrated that a chemosensory protein (CSP) in Locusta migratoria is involved in detecting an antifeedant. This CSP, LmigEST6 (GenBank Acc. No. AJ973420), we named as LmigCSPIII, expressed in sensory organs where chemosensilla are widely distributed. Fluorescent binding experiments indicated that LmigCSPIII exhibits high binding affinity to α-amylcinnamaldehyde (AMCAL), a natural compound from non-host plant. This compound was subsequently demonstrated to be an effective antifeedant to locusts in feeding bioassay. By injection of double-stranded RNA (dsRNA) of LmigCSPIII, we generated LmigCSPIII knockdown locusts. The feeding behaviour assays demonstrated that the LmigCSPIII knockdown locusts had reduced sensitivity to the antifeedant but showed no changes in their physiological development or food consumption. Therefore, we inferred that this chemosensory protein is involved in antifeedant detection. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20754450
Volume :
12
Issue :
1
Database :
Academic Search Index
Journal :
Insects (2075-4450)
Publication Type :
Academic Journal
Accession number :
148406307
Full Text :
https://doi.org/10.3390/insects12010001