Back to Search Start Over

On the Performance of MIMO Full-Duplex Relaying System With SWIPT Under Outdated CSI.

Authors :
Hoang, Tran Manh
Tran, Xuan Nam
Nguyen, Ba Cao
Dung, Le The
Source :
IEEE Transactions on Vehicular Technology. Dec2020, Vol. 69 Issue 12, p15580-15593. 14p.
Publication Year :
2020

Abstract

In this paper, we propose a full-duplex (FD) relaying system with multi-input multi-output (MIMO) with simultaneous wireless information and power transfer (SWIPT), where the communication from source to destination is assisted by a full-duplex decode-and-forward (DF) relay. The time switching (TS) protocol is used at the relay to harvest the energy of radio-frequency (RF) signals transmitted from the source. To improve both system performance and the amount of harvested energy, multiple antennas are used at source and destination. Transmit antenna selection (TAS) is employed at the source with an assumption that the feedback of channel state information (CSI) is outdated. Meanwhile, both selection combining (SC) and maximal ratio combining (MRC) techniques are applied at the destination. The closed-form expressions of the outage probability (OP), optimal throughput, and symbol error probability (SEP) are derived subject to the outdated CSI over Rayleigh fading channels. We also make a comparison between the performance of the proposed MIMO-FD relaying system with SWIPT and that of MIMO half-duplex (HD) relaying systems with and without SWIPT. The validity of derived mathematical expressions is verified by Monte-Carlo simulations. Numerical results show that the TAS/MRC scheme gives better system performance than the TAS/SC scheme. Moreover, higher energy harvesting time is needed to maximize the throughput than to minimize the OP. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189545
Volume :
69
Issue :
12
Database :
Academic Search Index
Journal :
IEEE Transactions on Vehicular Technology
Publication Type :
Academic Journal
Accession number :
148353686
Full Text :
https://doi.org/10.1109/TVT.2020.3043015