Back to Search Start Over

Synthesis and toxicity assessment of Fe3O4 NPs grafted by ∼ NH2-Schiff base as anticancer drug: modeling and proposed molecular mechanism through docking and molecular dynamic simulation.

Authors :
Eshaghi Malekshah, Rahime
Fahimirad, Bahareh
Aallaei, Mohammadreza
Khaleghian, Ali
Source :
Drug Delivery. Dec2020, Vol. 27 Issue 1, p1201-1217. 17p.
Publication Year :
2020

Abstract

Superparamagnetic iron oxide nanoparticles have been synthesized using chain length of (3-aminopropyl) triethoxysilane for cancer therapy. First, we have developed a layer by layer functionalized with grafting 2,4‐toluene diisocyanate as a bi‐functional covalent linker onto a nano-Fe3O4 support. Then, they were characterized by Fourier transform infrared, X-ray powder diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and VSM techniques. Finally, all nanoparticles with positive or negative surface charges were tested against K562 (myelogenous leukemia cancer) cell lines to demonstrate their therapeutic efficacy by MTT assay test. We found that the higher toxicity of Fe3O4@SiO2@APTS ∼ Schiff base-Cu(II) (IC50: 1000 μg/mL) is due to their stronger in situ degradation, with larger intracellular release of iron ions, as compared to surface passivated NPs. For first time, the molecular dynamic simulations of all compounds were carried out afterwards optimizing using MM+, Semi-empirical (AM1) and Ab-initio (STO-3G), Forcite Gemo Opt, Forcite Dynamics, Forcite Energy and CASTEP in Materials studio 2017. The energy (eV), space group, lattice parameters (Å), unit cell parameters (Å), and electron density of the predicted structures were taken from the CASTEP module of Materials Studio. The docking methods were used to predict the DNA binding affinity, ribonucleotide reductase, and topoisomerase II. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10717544
Volume :
27
Issue :
1
Database :
Academic Search Index
Journal :
Drug Delivery
Publication Type :
Academic Journal
Accession number :
148111935
Full Text :
https://doi.org/10.1080/10717544.2020.1801890