Back to Search Start Over

Novel CFD modeling approaches to assessing urine flow in prostatic urethra after transurethral surgery.

Authors :
Zhang, Bin
Liu, Shuang
Liu, Yinxia
Wu, Bo
Zhang, Xuhui
Wang, Xin
Liang, Xuezhi
Cao, Xiaoming
Wang, Dongwen
Wu, Chin-Lee
Source :
Scientific Reports. 1/12/2021, Vol. 11 Issue 1, p1-9. 9p.
Publication Year :
2021

Abstract

Assessment of the pressure and velocity of urine flow for different diameter ratios of prostatic urethra (RPU) after transurethral surgery using computational fluid dynamics (CFD). A standardized and idealized two-dimensional CFD model after transurethral surgery (CATS-1st) was developed for post-surgery mid-voiding. Using CATS-1st, 210 examples were amplified according to an array of size [3][5][14], which contained three groups of longitudinal diameters of prostatic urethra (LD-PU). Each of these groups contained five subgroups of transverse diameters of the bladder neck (TD-BN), each with 14 examples of transverse diameters of PU (TD-PU). The pressure and velocity of urine flow were monitored through flow dynamics simulation, and the relationship among RPU-1 (TD-PU/TD-BN), RPU-2 (RPU-1/LD-PU), the transverse diameter of the vortex, and the midpoint velocity of the external urethral orifice (MV-EUO) was determined. A total of 210 CATS examples, including CATS-1st examples, were analyzed. High (bladder and PU) and medium/low (the rest of the urethra) pressure zones, and low (bladder), medium (PU), and high (the rest of the urethra) velocity zones were determined. The rapid changes in the velocity were concentrated in and around the PU. Laminar flow was present in all the examples. The vortices appeared and then gradually shrank with reducing RPU on both the sides of PU in 182 examples. In the vortex examples, minimum RPU-1 and RPU-2 reached close to the values of 0.79 and 0.02, respectively. MV-EUO increased gradually with decreasing RPU. In comparison to the vortex examples, the non-vortex examples exhibited a significantly higher (p < 0.01) MV-EUO. The developed CFD models (CATS) presented an effective simulation of urine flow behavior within the PU after transurethral surgery for benign prostatic hyperplasia (BPH). These models could prove to be useful for morphological repair in PU after transurethral surgery. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
148073097
Full Text :
https://doi.org/10.1038/s41598-020-79505-6