Back to Search
Start Over
HITTING MINORS ON BOUNDED TREEWIDTH GRAPHS. I. GENERAL UPPER BOUNDS.
- Source :
-
SIAM Journal on Discrete Mathematics . 2020, Vol. 34 Issue 3, p1623-1648. 26p. - Publication Year :
- 2020
-
Abstract
- For a finite collection of graphs F, the F-M-DELETION problem consists in, given a graph G and an integer k, deciding whether there exists S ⊆ V (G) with |S| ≤ k such that G\S does not contain any of the graphs in F as a minor. We are interested in the parameterized complexity of F-M-Deletion when the parameter is the treewidth of G, denoted by tw. Our objective is to determine, for a fixed F, the smallest function fF such that F-M-DELETION can be solved in time fF(tw) . nO(1) on n-vertex graphs. We prove that fF(tw) = 2²O(tw.logtw) for every collection F, that fF(tw) = 2O(tw.log tw) if F contains a planar graph, and that fF(tw) = 2O(tw) if in addition the input graph G is planar or embedded in a surface. We also consider the version of the problem where the graphs in F are forbidden as topological minors, called F-TM-Deletion. We prove similar results for this problem, except that in the last two algorithms, instead of requiring F to contain a planar graph, we need it to contain a subcubic planar graph. This is the first of a series of articles on this topic. [ABSTRACT FROM AUTHOR]
- Subjects :
- *MINORS
Subjects
Details
- Language :
- English
- ISSN :
- 08954801
- Volume :
- 34
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- SIAM Journal on Discrete Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 147892624
- Full Text :
- https://doi.org/10.1137/19M1287146