Back to Search Start Over

Characterizing the climatic niche of mast seeding in beech: Evidences of trade-offs between vegetation growth and seed production.

Authors :
Bajocco, S.
Ferrara, C.
Bascietto, M.
Alivernini, A.
Chirichella, R.
Cutini, A.
Chianucci, F.
Source :
Ecological Indicators. Feb2021, Vol. 121, pN.PAG-N.PAG. 1p.
Publication Year :
2021

Abstract

• The aim is to model the pheno-climatic conditions suitable for masting in beech. • We exploited the concept of ecological niche, by using SPEI and masting years. • We analyzed the relationship between climate and remotely sensed phenology. • Reproduction and growth in beech act as two different climate-dependent responses. Masting is a complex mechanism which is mainly driven by a combination of internal plant resources and climatic conditions. While the driving role of climate in masting is being intensively studied, the interplay among climate, seed production, vegetation growth and phenology still needs further investigation. The objectives of this study were to identify the climatic determinants of different levels of seed production and of NDVI-based vegetation growth and phenology in European beech, and to evaluate if exists a trade-off between these two plant processes. To answer these questions, we used a 25-year-long dataset of beech seed production. We exploited the concept of ecological niche assuming that a mast year can be modeled like a species with variable preferences for different resources, which are the underlying annual climatic conditions; we performed an Ecological Niche Factor Analysis (ENFA), a presence-only modeling tool conventionally used in zoology and botany, and used seasonal (spring, summer, autumn) Standardized Precipitation-Evaporation Index (SPEI) observations, considering the current year (y−0), and up to one (y−1) and two (y−2) years before the masting event. For analyzing the role of vegetation growth and phenology, we used seasonal Normalized Difference Vegetation Index (NDVI) values and associated NDVI-based phenological metrics derived from Landsat imagery. Results indicated the driving role of climate for masting, especially in VHSP years. A moist summer and dry spring at y−2 and a dry summer at y−1 represented the main driving climatic conditions for masting; while a moist spring during the observation year represented the key condition for triggering higher intensities of seed production. Summer NDVI at y−0 and y−1 represented the variables discriminating best between masting and non-masting years and resulted as driven by opposite summer climatic conditions than seed production, thus indicating a trade-off between seed production and vegetation phenology. We concluded that reproduction and vegetation growth act as two different climate-dependent plant responses in beech, in a way that certain conditions through the years promote mast seeding and the opposite conditions favor vegetation growth. The understanding of climate-growth-masting relationships represents indispensable knowledge for providing a holistic view of masting mechanisms and developing adaptive forest management strategies in this species. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1470160X
Volume :
121
Database :
Academic Search Index
Journal :
Ecological Indicators
Publication Type :
Academic Journal
Accession number :
147813729
Full Text :
https://doi.org/10.1016/j.ecolind.2020.107139