Back to Search
Start Over
Protection strategies for biocatalytic proteins under plasma treatment.
- Source :
-
Journal of Physics D: Applied Physics . 1/21/2021, Vol. 54 Issue 3, p1-7. 7p. - Publication Year :
- 2021
-
Abstract
- In plasma-driven biocatalysis, enzymes are employed to carry out reactions using species generated by non-thermal plasmas as the precursors. We have previously demonstrated that this is feasible in principle, but that the approach suffers from the short lifetime of the biocatalyst under operating conditions. In this work, protection strategies were investigated to prevent the dielectric barrier discharge plasma-induced inactivation of biocatalysts, using recombinant unspecific peroxygenase from Agrocybe aegerita(rAaeUPO), one of the most promising enzymes for plasma-driven biocatalysis. Treatment in oxygen-free atmospheres did not provide any advantage over treatment in synthetic air, indicating that the detrimental reactive species did not originate from oxygen in the plasma phase. Chemical scavengers were employed to eliminate undesired reactive species, without any long-term effect on enzyme lifetime. Similarly, chaperones, including the known stress response proteins Hsp33, CnoX, and RidA did not increase the lifetime of rAaeUPO. Immobilization of the biocatalyst proved effective in preserving enzyme activity. The residual activity of rAaeUPO after plasma treatment strongly depended on the specific immobilization support. Essentially complete protection for at least 15 min of plasma exposure was achieved with an epoxy-butyl-functionalized carrier. This study presents new insights into plasma–protein interactions and plots a path forward for protecting biocatalytic proteins from plasma-mediated inactivation. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00223727
- Volume :
- 54
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Journal of Physics D: Applied Physics
- Publication Type :
- Academic Journal
- Accession number :
- 147616809
- Full Text :
- https://doi.org/10.1088/1361-6463/abb979