Back to Search
Start Over
Dereplication of Natural Extracts Diluted in Glycerin: Physical Suppression of Glycerin by Centrifugal Partition Chromatography Combined with Presaturation of Solvent Signals in 13 C-Nuclear Magnetic Resonance Spectroscopy.
- Source :
-
Molecules . Nov2020, Vol. 25 Issue 21, p5061. 1p. - Publication Year :
- 2020
-
Abstract
- For scientific, regulatory, and safety reasons, the chemical profile knowledge of natural extracts incorporated in commercial cosmetic formulations is of primary importance. Many extracts are produced or stabilized in glycerin, a practice which hampers their characterization. This article proposes a new methodology for the quick identification of metabolites present in natural extracts when diluted in glycerin. As an extension of a 13C nuclear magnetic resonance (NMR) based dereplication process, two complementary approaches are presented for the chemical profiling of natural extracts diluted in glycerin: A physical suppression by centrifugal partition chromatography (CPC) with the appropriate biphasic solvent system EtOAc/CH3CN/water 3:3:4 (v/v/v) for the crude extract fractionation, and a spectroscopic suppression by presaturation of 13C-NMR signals of glycerin applied to glycerin containing fractions. This innovative workflow was applied to a model mixture containing 23 natural metabolites. Dereplication by 13C-NMR was applied either on the dry model mixture or after dilution at 5% in glycerin, for comparison, resulting in the detection of 20 out of 23 compounds in the two model mixtures. Subsequently, a natural extract of Cedrus atlantica diluted in glycerin was characterized and resulted in the identification of 12 metabolites. The first annotations by 13C-NMR were confirmed by two-dimensional NMR and completed by LC-MS analyses for the annotation of five additional minor compounds. These results demonstrate that the application of physical suppression by CPC and presaturation of 13C-NMR solvent signals highly facilitates the quick chemical profiling of natural extracts diluted in glycerin. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 25
- Issue :
- 21
- Database :
- Academic Search Index
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- 147300685
- Full Text :
- https://doi.org/10.3390/molecules25215061