Back to Search Start Over

P.507 Machine learning classification of first-episode psychosis using cortical thickness: a large multicenter magnetic resonance imaging study.

Authors :
Pigoni, A.
Squarcina, L.
Dwyer, D.
Borgwardt, S.
Crespo-Facorro, B.
Dazzan, P.
Smesny, S.
Spaniel, F.
Spalletta, G.
Sanfelici, R.
Antonucci, L.
Reuf, A.
Oeztuerk, O.
Schmidt, A.
Ciufolini, S.
Harrisberger, F.
Langbein, K.
Gussew, A.
Reichenbach, J.
Zaytseva, Y.
Source :
European Neuropsychopharmacology. 2020 Supplement 1, Vol. 40, pS285-S286. 2p.
Publication Year :
2020

Abstract

B Introduction: b Machine learning neuroimaging classifications of first-episode psychosis (FEP) have analyzed mostly brain volumes. Results from classification in FEP are mixed [2] and such heterogeneity could be explained by MRI machine differences, various ML algorithms, and specific illness characteristics of local samples. [Extracted from the article]

Details

Language :
English
ISSN :
0924977X
Volume :
40
Database :
Academic Search Index
Journal :
European Neuropsychopharmacology
Publication Type :
Academic Journal
Accession number :
147266163
Full Text :
https://doi.org/10.1016/j.euroneuro.2020.09.371