Back to Search Start Over

Radionuclide Molecular Imaging of EpCAM Expression in Triple-Negative Breast Cancer Using the Scaffold Protein DARPin Ec1.

Authors :
Vorobyeva, Anzhelika
Bezverkhniaia, Ekaterina
Konovalova, Elena
Schulga, Alexey
Garousi, Javad
Vorontsova, Olga
Abouzayed, Ayman
Orlova, Anna
Deyev, Sergey
Tolmachev, Vladimir
Kumar, Krishan
Source :
Molecules. Oct2020, Vol. 25 Issue 20, p4719-4719. 1p.
Publication Year :
2020

Abstract

Efficient treatment of disseminated triple-negative breast cancer (TNBC) remains an unmet clinical need. The epithelial cell adhesion molecule (EpCAM) is often overexpressed on the surface of TNBC cells, which makes EpCAM a potential therapeutic target. Radionuclide molecular imaging of EpCAM expression might permit selection of patients for EpCAM-targeting therapies. In this study, we evaluated a scaffold protein, designed ankyrin repeat protein (DARPin) Ec1, for imaging of EpCAM in TNBC. DARPin Ec1 was labeled with a non-residualizing [125I]I-para-iodobenzoate (PIB) label and a residualizing [99mTc]Tc(CO)3 label. Both imaging probes retained high binding specificity and affinity to EpCAM-expressing MDA-MB-468 TNBC cells after labeling. Internalization studies showed that Ec1 was retained on the surface of MDA-MB-468 cells to a high degree up to 24 h. Biodistribution in Balb/c nu/nu mice bearing MDA-MB-468 xenografts demonstrated specific uptake of both [125I]I-PIB-Ec1 and [99mTc]Tc(CO)3-Ec1 in TNBC tumors. [125I]I-PIB-Ec1 had appreciably lower uptake in normal organs compared with [99mTc]Tc(CO)3-Ec1, which resulted in significantly (p < 0.05) higher tumor-to-organ ratios. The biodistribution data were confirmed by micro-Single-Photon Emission Computed Tomography/Computed Tomography (microSPECT/CT) imaging. In conclusion, an indirectly radioiodinated Ec1 is the preferable probe for imaging of EpCAM in TNBC. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
25
Issue :
20
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
147003117
Full Text :
https://doi.org/10.3390/molecules25204719