Back to Search Start Over

Non-isothermal decomposition kinetics of nano-scale CaCO3 as a function of particle size variation.

Authors :
Ray, Saibal
Bhattacharya, Tapas Kumar
Singh, Vivek Kumar
Deb, Debabrata
Ghosh, Shounak
Das, Santanu
Source :
Ceramics International. Jan2021, Vol. 47 Issue 1, p858-864. 7p.
Publication Year :
2021

Abstract

We report the synthesis of nanocrystalline calcium carbonate with varying particle sizes by precipitation techniques from an aqueous solution of calcium nitrate and sodium carbonate at controlled pH. The particle size of the carbonate powder was precisely controlled by changing the precursor concentration. The synthesized carbonate powders were characterized by using scanning electron microscopy, X-ray diffraction technique, and transmission electron microscopy. The particle size, along with the crystallite size of as-synthesized carbonate powder, decreases with increasing precursor concentration. The non-isothermal decomposition kinetics of the carbonate powder was also evaluated by using near to the modified Arrhenius equation's exact solution. The experimental results were best fitted at n = 0.5, and the one-dimensional diffusion-controlled transport process mechanism (D 1) and one-dimensional phase boundary movement mechanism (R 1) was found to be very close fit of the corresponding evaluated g(α) value. The apparent activation energy of the nano calcium carbonate decomposition was found in the range of 120–175 kJ/mol, which is also inherently functioning with the average particle size. The apparent activation energy of decomposition of CaCO 3 found to be decreased with decreasing average particle size of nanocrystalline calcium carbonate. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02728842
Volume :
47
Issue :
1
Database :
Academic Search Index
Journal :
Ceramics International
Publication Type :
Academic Journal
Accession number :
146998346
Full Text :
https://doi.org/10.1016/j.ceramint.2020.08.198