Back to Search Start Over

Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model.

Authors :
Ali, Bagh
Hussain, Sajjad
Nie, Yufeng
Hussein, Ahmed Kadhim
Habib, Danial
Source :
Powder Technology. Jan2021, Vol. 377, p439-452. 14p.
Publication Year :
2021

Abstract

A description for magnetohydrodynamic effects on the transient rotational flow of Oldroyd-B nanofluids is considered. The temperature and concentration distributions are associated with Cattaneo-Christove double diffusion, Brownian motion, thermophoresis, Soret, and Dufour. The governing equations in the three-dimensional form are transmuted into dimensionless two-dimensional form with the implementation of suitable scaling transformations. The variational finite element procedure is harnessed and coded in Matlab script to obtain the numerical solution of the coupled non-linear partial differential problem. The varying patterns of velocities, skin friction coefficients, Nusselt number, Sherwood number, fluid temperature, and concentration functions are computed to reveal the physical nature of this study. It is observed that higher inputs of the parameters for magnetic force, Deborah number, rotational fluid, and cause to slow the primary as well as secondary velocities but they raise the temperature like thermophoresis and Brownian motion does. However, thermal relaxation parameter reduces the nanofluid temperature. The local heat transfer rate reduces against Nt, rotational, and Nb parameters, and it is higher for Prandtl number. The current FEM (finite element method) solutions have been approved widely with the recent published results, showing an excellent correlation. The examination has significant applications in the food industry and relevance to energy systems, biomedical, and modern technologies of aerospace systems. Unlabelled Image • Unsteady rotating flow of Oldroyd-B nanofluid persuaded by double diffusion Cattaneo Christov is modeled. • Buongiorno model for nanoparticles is taken into account for modeling. • Finite element technique is implemented to solve the non-linear systems of partial differential equations. • Higher inputs of the parameters for rotational fluid cause to slow the primary as well as secondary velocities. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00325910
Volume :
377
Database :
Academic Search Index
Journal :
Powder Technology
Publication Type :
Academic Journal
Accession number :
146909623
Full Text :
https://doi.org/10.1016/j.powtec.2020.09.008