Back to Search Start Over

A novel framework for automated monitoring and analysis of high density pedestrian flow.

Authors :
Baqui, Muhammad
Samad, Manar D.
Löhner, Rainald
Source :
Journal of Intelligent Transportation Systems. 2020, Vol. 24 Issue 6, p585-597. 13p.
Publication Year :
2020

Abstract

Pedestrian traffic is an important subject of surveillance to ensure public safety and traffic management, which may benefit from intelligent and continuous analysis of pedestrian videos. State-of-the-art methods for intelligent pedestrian surveillance have a number of limitations in automating and deriving useful information of high-density pedestrian traffic (HDPT) using closed circuit television (CCTV) images. This work introduces an automatic and improved HDPT surveillance system by integrating and optimizing multiple computational steps to predict pedestrian distribution from input video frames. A fast and efficient particle image velocimetry (PIV) technique is proposed to yield pedestrian velocities. A machine learning regressor model, boosted Ferns, is used to improve pedestrian count and density estimation: an essential metric for HDPT analysis. A camera perspective model is proposed to improve the speed and position estimates of HDPT by projecting 2D image pixels to 3D world-coordinate dat. All these functional improvements in HDPT velocity and displacement estimations are used as inputs to a sophisticated pedestrian flow evolution model, PEDFLOW to predict HDPT distribution at a future time point, which is a crucial information for pedestrian traffic management. The predicted and simulated HDPT properties (density, velocity) obtained using the proposed framework show low errors when compared to the ground truth data. The proposed framework is computationally efficient, suitable for multiple camera feeds with HDPT videos, and capable of rapidly analyzing and predicting flows of thousands of pedestrians. The paper shows one of the first steps towards fully integrated CCTV-based automated HDPT management system. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15472450
Volume :
24
Issue :
6
Database :
Academic Search Index
Journal :
Journal of Intelligent Transportation Systems
Publication Type :
Academic Journal
Accession number :
146730888
Full Text :
https://doi.org/10.1080/15472450.2019.1643724