Back to Search Start Over

The Effect of Nickel on the Microstructure, Mechanical Properties and Corrosion Properties of Niobium–Vanadium Microalloyed Powder Metallurgy Steels.

Authors :
Ahssi, Mohamed Ahmed Mohamed
Erden, Mehmet Akif
Acarer, Mustafa
Çuğ, Harun
Source :
Materials (1996-1944). Sep2020, Vol. 13 Issue 18, p4021. 1p.
Publication Year :
2020

Abstract

In this study, the effects of adding Ni in different ratios to Fe-matrix material containing C-Nb-V produced by powder metallurgy on microstructure, tensile strength, hardness and corrosion behaviors were investigated. Fe-C and Fe-C-Nb-V powders containing 5%, 10%, 13%, 15%, 20%, 30% and 40% nickel were pressed at 700 MPa and then sintered in an Ar atmosphere at 1400 °C. Microstructures of the samples were characterized with optical microscope, scanning electron microscope (SEM) and XRD. Corrosion behaviors were investigated by obtaining Tafel curves in an aqueous solution containing 3.5% NaCl. Mechanical properties were determined by hardness and tensile testing. While Fe-C alloy and Fe-C-Nb-V microalloyed steel without Ni typically have a ferrite-pearlite microstructure, the austenite phase has been observed in the microstructures of the alloys with 10% nickel and further. Yield and tensile strength increased with nickel content and reached the highest strength values with 13% Ni content. The addition of more nickel led to decrease the strength. Analysis of Tafel curves showed that corrosion resistance of alloys increased with increasing nickel concentration. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
13
Issue :
18
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
146549160
Full Text :
https://doi.org/10.3390/ma13184021