Back to Search Start Over

Evaluating the Performance of a Convection-Permitting Model by Using Dual-Polarimetric Radar Parameters: Case Study of SoWMEX IOP8.

Authors :
You, Cheng-Rong
Chung, Kao-Shen
Tsai, Chih-Chien
Source :
Remote Sensing. Sep2020, Vol. 12 Issue 18, p3004. 1p.
Publication Year :
2020

Abstract

In this study, a dual-polarimetric radar observation operator is established and modified for the Taiwan area for the purpose of model verification. A severe squall line case during the Southwest Monsoon Experiment Intensive Observing Period 8 (SoWMEX IOP#8) on 14 June 2008, is selected and examined. Because the operator is adopted from the use of the midlatitude region, sensitivity tests are performed to obtain the optimal setting of the operator in the subtropical region. To accurately capture the dynamic structure of the squall lines, the ensemble-based data assimilation system, which assimilates both radial wind and reflectivity data, is used to obtain the optimal analysis field on the mesoscale for evaluating the performance of model simulation. The characteristics of two microphysics schemes are investigated, and the results obtained using the schemes are compared with the S-band dual-polarimetric radar observations. The horizontal and vertical cross-sections show that the analyses resemble the observations. Both schemes can replicate the polarimetric parameter signature such as Z D R and K D P columns. When comparing model simulation with polarimetric parameters through the drawing of contour frequency by altitude diagrams (CFADs), the results reveal that the single moment microphysics scheme performs better than the double moment scheme in this case. However, the reflectivity field in the stratiform area is more accurately captured when using the double moment scheme. Furthermore, validation with polarimetric variables ( Z H , Z D R and K D P ) histograms shows underestimation of the K D P field in both schemes. Overall, this study indicates the benefit of assimilating radial wind and reflectivity data for the analyses of severe precipitation systems and the necessity of assimilating polarimetric parameters for the accuracy of microphysical processes, especially complex microphysics schemes in subtropical region. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
12
Issue :
18
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
146537748
Full Text :
https://doi.org/10.3390/rs12183004