Back to Search Start Over

Bivariate two-band wavelets demystified.

Authors :
Charina, Maria
Conti, Costanza
Cotronei, Mariantonia
Sauer, Tomas
Source :
Linear Algebra & its Applications. Jan2021, Vol. 608, p13-36. 24p.
Publication Year :
2021

Abstract

There are several well known constructions of bivariate, compactly supported wavelets based on orthogonal refinable functions with dilation matrices of determinant 2 or -2. The corresponding filterbank consists of only two subbands: low-pass and high-pass. We unify these constructions and express their intrinsic structure via normal forms of the corresponding bivariate polyphase representations. A normal form is sparse and is obtained from the polyphase representation via a suitable unitary transformation. We characterize certain normal forms of bi-degree (1 , 1) and (2 , 2) and show that their non-zero elements correspond to the solutions of the univariate Quadrature Mirror Filter conditions. The unitary transformations are chosen to ensure sum rule conditions of certain order. We illustrate our results on some examples and address the quest for characterizing bivariate wavelet constructions of higher bi-degree. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00243795
Volume :
608
Database :
Academic Search Index
Journal :
Linear Algebra & its Applications
Publication Type :
Academic Journal
Accession number :
146482984
Full Text :
https://doi.org/10.1016/j.laa.2020.08.013