Back to Search Start Over

A Strategy for Constructing Pore‐Space‐Partitioned MOFs with High Uptake Capacity for C2 Hydrocarbons and CO2.

Authors :
Wang, Yong
Jia, Xiaoxia
Yang, Huajun
Wang, Yanxiang
Chen, Xitong
Hong, Anh N.
Li, Jinping
Bu, Xianhui
Feng, Pingyun
Source :
Angewandte Chemie International Edition. 10/19/2020, Vol. 59 Issue 43, p19027-19030. 4p.
Publication Year :
2020

Abstract

Introduction of pore partition agents into hexagonal channels of MIL‐88 type (acs topology) endows materials with high tunability in gas sorption. Here, we report a strategy to partition acs framework into pacs (partitioned acs) crystalline porous materials (CPM). This strategy is based on insertion of in situ synthesized 4,4′‐dipyridylsulfide (dps) ligands. One third of open metal sites in the acs net are retained in pacs MOFs; two thirds are used for pore‐space partition. The Co2V‐pacs MOFs exhibit near or at record high uptake capacities for C2H2, C2H4, C2H6, and CO2 among MOFs. The storage capacity of C2H2 is 234 cm3 g−1 (298 K) and 330 cm3 g−1 (273 K) at 1 atm for CPM‐733‐dps (the Co2V‐BDC form, BDC=1,4‐benzenedicarboxylate). These high uptake capacities are accomplished with low heat of adsorption, a feature desirable for low‐energy‐cost adsorbent regeneration. CPM‐733‐dps is stable and shows no loss of C2H2 adsorption capacity following multiple adsorption–desorption cycles. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14337851
Volume :
59
Issue :
43
Database :
Academic Search Index
Journal :
Angewandte Chemie International Edition
Publication Type :
Academic Journal
Accession number :
146395117
Full Text :
https://doi.org/10.1002/anie.202008696