Back to Search Start Over

3D tomography integrating view registration and its application in highly turbulent flames.

Authors :
Liu, Ning
Zhou, Ke
Ma, Lin
Source :
Combustion & Flame. Nov2020, Vol. 221, p429-440. 12p.
Publication Year :
2020

Abstract

Recently, reconstruction integrating view registration (RIVR) has been demonstrated as an improved method to significantly enhance the accuracy of three-dimensional (3D) measurements in nonreactive flows. This work extended the RIVR method to 3D measurements of highly turbulent reactive flows with two specific goals. The first goal was to examine if the RIVR method can be effectively applied to highly turbulent flame structures, which display distinctively different spatial features from nonreactive flows. This examination of RIVR was performed specifically using two performance metrics, accuracy and spatial resolution. The second goal was to quantify the end benefits the RIVR can bring about on key flame properties involved in turbulence-chemistry interaction, such as flame surface density. The results demonstrated that the RIVR method can effectively enhance reconstruction accuracy of the thin flame front marked by CH radicals in 3D distribution. Compared to past methods, the RIVR method reduced the reconstruction errors by ~48% on average and improved the spatial resolution by ~26% on average. Such accuracy enhancement ultimately led to a ~15% improved accuracy on the determination of the 3D flame surface density as an indicator of the total burning rate. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00102180
Volume :
221
Database :
Academic Search Index
Journal :
Combustion & Flame
Publication Type :
Academic Journal
Accession number :
146170672
Full Text :
https://doi.org/10.1016/j.combustflame.2020.08.025