Back to Search
Start Over
ON A LATTICE GENERALISATION OF THE LOGARITHM AND A DEFORMATION OF THE DEDEKIND ETA FUNCTION.
- Source :
-
Bulletin of the Australian Mathematical Society . Aug2020, Vol. 102 Issue 1, p118-125. 8p. - Publication Year :
- 2020
-
Abstract
- We consider a deformation $E_{L,\unicode[STIX]{x1D6EC}}^{(m)}(it)$ of the Dedekind eta function depending on two $d$ -dimensional simple lattices $(L,\unicode[STIX]{x1D6EC})$ and two parameters $(m,t)\in (0,\infty)$ , initially proposed by Terry Gannon. We show that the minimisers of the lattice theta function are the maximisers of $E_{L,\unicode[STIX]{x1D6EC}}^{(m)}(it)$ in the space of lattices with fixed density. The proof is based on the study of a lattice generalisation of the logarithm, called the lattice logarithm, also defined by Terry Gannon. We also prove that the natural logarithm is characterised by a variational problem over a class of one-dimensional lattice logarithms. [ABSTRACT FROM AUTHOR]
- Subjects :
- *LOGARITHMS
*THETA functions
*GENERALIZATION
Subjects
Details
- Language :
- English
- ISSN :
- 00049727
- Volume :
- 102
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Bulletin of the Australian Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 146039146
- Full Text :
- https://doi.org/10.1017/S000497272000012X