Back to Search Start Over

Ubiquitin Is Conjugated by Membrane Ubiquitin Ligase to Three Sites, including the N Terminus, in Transmembrane Region of Mammalian 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase.

Authors :
Doolman, Ram
Leichner, Gil S.
Avner, Rachel
Roitelman, Joseph
Source :
Journal of Biological Chemistry. 9/10/2004, Vol. 279 Issue 37, p38184-38193. 10p. 32 Black and White Photographs, 1 Diagram, 1 Chart, 2 Graphs.
Publication Year :
2004

Abstract

The stability of the endoplasmic reticulum (ER) glycoprotein 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), the key enzyme in cholesterol biosynthesis, is negatively regulated by sterols. HMGR is anchored in the ER via its N-terminal region, which spans the membrane eight times and contains a sterol-sensing domain. We have previously established that degradation of mammalian HMGR is mediated by the ubiquitin-proteasome system (Ravid, T., Doolman, R., Avner, R., Harats, D., and Roitelman, J. (2000) J. Biol. Chem. 275, 35840-35847). Here we expressed in HEK- 293 cells an HA-tagged-truncated version of HMGR that encompasses all eight transmembrane spans (350 N-terminal residues). Similar to endogenous HMGR, degradation of this HMG350-3HA protein was accelerated by sterols, validating it as a model to study HMGR turnover. The degradation of HMG240-3HA, which lacks the last two transmembrane spans yet retains an intact sterol-sensing domain, was no longer accelerated by sterols. Using HMG350-3HA, we demonstrate that transmembrane region of HMGR is ubiquitinated in a sterol-regulated fashion. Through site-directed Lys → Arg mutagenesis, we pinpoint Lys248 and Lys89; as the internal lysines for ubiquitin attachment, with Lys248 serving as the major acceptor site for polyubiquitination. Moreover, the data indicate that the N terminus is also ubiquitinated. The degradation rates of the Lys → Arg mutants correlates with their level of ubiquitination. Notably, lysine-less HMG350-3HA is degraded faster than wild-type protein, suggesting that lysines other than Lys89 and Lys248 attenuate ubiquitination at the latter residues. The ATP-dependent ubiquitination of HMGR in isolated microsomes requires E1 as the sole cytosolic protein, indicating that ER-bound E2 and E3 enzymes catalyze this modification. Polyubiquitination of HMGR is correlated with its extraction from the ER membrane, a process likely to be assisted by cytosolic p97/VCP/Cdc48p-Ufd1-Np14 complex, as only ubiquitinated HMGR pulls down p97. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219258
Volume :
279
Issue :
37
Database :
Academic Search Index
Journal :
Journal of Biological Chemistry
Publication Type :
Academic Journal
Accession number :
14601866
Full Text :
https://doi.org/10.1074/jbc.M405935200