Back to Search Start Over

Multiferroic characterization of 3-phase (1-x) (0.7BiFeO3-0.3CoFe2O4)-xPb(Zr,Ti)O3 composites with magnetically driven polarization.

Authors :
Sufyan, Muhammad
Lu, Zhenya
Chen, Zhiwu
Wang, Xin
Abbas, Syed Kumail
Source :
Journal of Alloys & Compounds. Dec2020, Vol. 849, pN.PAG-N.PAG. 1p.
Publication Year :
2020

Abstract

Multiferroic materials with magnetoelectric coupling have attracted researchers and scientists as these materials can provide higher freedom to facilitate the functioning of multifunctional devices. The three-phase complex multiferroic composites consisting of rhombohedral BiFeO 3 , spinel cubic CoFe 2 O 4 , and tetragonal Pb(Zr 0·52 Ti 0.48)O 3 of the form (1− x) (0.3CoFe 2 O 4 -0.7BiFeO 3)− x Pb(Zr 0·52 Ti 0.48)O 3 (x = 0, 0.1, 0.2, and 0.3) were synthesized following a three-step route. The X-ray diffraction analysis confirmed the respective crystalline phases of the BiFeO 3 , CoFe 2 O 4 , and Pb(Zr 0·52 Ti 0.48)O 3. The Surface microstructures of the composites were analyzed by the scanning electron microscope (SEM) and elemental stoichiometric contents were confirmed by the energy dispersive X-ray (EDX) analysis. Reversible polarization with the application of an applied magnetic field was observed in the form of ME response for all the samples. The electric and magnetic properties (Dielectric, ferroelectric and ferromagnetic properties) were significantly enhanced in the 0.3CoFe 2 O 4 -0.7BiFeO 3 system with the addition of piezoelectric Pb(Zr 0·52 Ti 0.48)O 3 without suppressing their magnetoelectric coupling coefficient (ME), proving the potential of these multiferroic composites for the fabrication of modern devices with multifunctional applications. • Three-phase multiferroic composites were synthesized following a three-step route. • X-ray diffraction analysis confirmed the respective three crystalline phases. • Elemental presence and stoichiometric contents were confirmed using EDX analysis. • Dielectric, ferroelectric and ferromagnetic properties were significantly enhanced. • The electronic properties improved without suppressing ME coupling coefficient. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09258388
Volume :
849
Database :
Academic Search Index
Journal :
Journal of Alloys & Compounds
Publication Type :
Academic Journal
Accession number :
145759968
Full Text :
https://doi.org/10.1016/j.jallcom.2020.156681