Back to Search Start Over

Millennial climate oscillations controlled the structure and evolution of Termination II.

Authors :
Domínguez-Villar, David
Vázquez-Navarro, Juan A.
Krklec, Kristina
Lojen, Sonja
López-Sáez, José A.
Dorado-Valiño, Miriam
Fairchild, Ian J.
Source :
Scientific Reports. 9/10/2020, Vol. 10 Issue 1, pN.PAG-N.PAG. 1p.
Publication Year :
2020

Abstract

The controls that affect the structure and timing of terminations are still poorly understood. We studied a tufa deposit from the Iberian Peninsula that covers Termination II (T-II) and whose chronology was synchronized to speleothem records. We used the same chronology to synchronize ocean sediments from the North Atlantic to correlate major climate events in a common timescale. We identify two stages within T-II. The first stage started with the increase of boreal summer integrated solar insolation, and during this stage three millennial climate oscillations were recorded. These oscillations resulted from complex ocean–atmosphere interactions in the Nordic seas, caused by the progressive decay of Northern Hemisphere ice-sheets. The second stage commenced after a glacial outburst that caused the collapse of the Thermohaline Circulation, a massive Heinrich event, and the onset of the Bipolar Seesaw Mechanism (BSM) that eventually permitted the completion of T-II. The pace of the millennial oscillations during the first stage of T-II controlled the onset of the second stage, when the termination became a non-reversible and global phenomenon that accelerated the deglaciation. During the last the two terminations, the BSM was triggered by different detailed climate interactions, which suggests the occurrence of different modes of terminations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
10
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
145675712
Full Text :
https://doi.org/10.1038/s41598-020-72121-4