Back to Search Start Over

Lead-free antiferroelectric AgNbO3: Phase transitions and structure engineering for dielectric energy storage applications.

Authors :
Jing Gao
Qian Li
Shujun Zhang
Jing-Feng Li
Source :
Journal of Applied Physics. 8/21/2020, Vol. 128 Issue 7, p1-8. 8p.
Publication Year :
2020

Abstract

The development of electronic materials for storing electrical energy is a thriving research field, where the materials used in batteries, supercapacitors, and dielectric capacitors have attracted extensive interest in last decades. The dielectric capacitors showing unique characteristics such as high power density and large charge/discharge rate have been actively studied, where the antiferroelectrics demonstrate great potentials for dielectric energy storage applications by storing and releasing energy upon a reversible electric-field induced antiferroelectric- ferroelectric phase transition. Recently, lead-free antiferroelectric AgNbO3 has emerged as a promising candidate to substitute conventional lead-based antiferroelectrics (such as PbZrO3) in energy storage applications. The phase transition dynamics of AgNbO3 is driven by a complex sequence of oxygen octahedron tilting orders in addition to cation displacement, which can be effectively engineered by a doping strategy. In this article, we present a succinct overview of the phase transition mechanisms in AgNbO3-based ceramics and describe how the phase transition characteristics are affected by the dopants. By exploring the composition related average structure and local structural evolutions, we provide a view toward the goal of establishing a link between the phase transition and physical properties tailored for dielectric energy storage applications. The development of electronic materials for storing electrical energy is a thriving research field, where the materials used in batteries, supercapacitors, and dielectric capacitors have attracted extensive interest in last decades. The dielectric capacitors showing unique characteristics such as high power density and large charge/discharge rate have been actively studied, where the antiferroelectrics demonstrate great potentials for dielectric energy storage applications by storing and releasing energy upon a reversible electric-field induced antiferroelectric- ferroelectric phase transition. Recently, lead-free antiferroelectric AgNbO3 has emerged as a promising candidate to substitute conventional lead-based antiferroelectrics (such as PbZrO3) in energy storage applications. The phase transition dynamics of AgNbO3 is driven by a complex sequence of oxygen octahedron tilting orders in addition to cation displacement, which can be effectively engineered by a doping strategy. In this article, we present a succinct overview of the phase transition mechanisms in AgNbO3-based ceramics and describe how the phase transition characteristics are affected by the dopants. By exploring the composition related average structure and local structural evolutions, we provide a view toward the goal of establishing a link between the phase transition and physical properties tailored for dielectric energy storage applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
128
Issue :
7
Database :
Academic Search Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
145292739
Full Text :
https://doi.org/10.1063/5.0018373