Back to Search
Start Over
An experimentally validated numerical model for bubble growth in magma.
- Source :
-
Journal of Volcanology & Geothermal Research . Sep2020, Vol. 402, pN.PAG-N.PAG. 1p. - Publication Year :
- 2020
-
Abstract
- Volcanic eruptions are driven by the growth of gas bubbles in magma. The timing and rate of bubble growth are important because they determine whether enough gas pressure can develop to fragment the melt. Bubbles grow in response to decompression and diffusive transport of dissolved volatiles (predominantly H 2 O) that exsolve into the bubbles. Growth is resisted by the viscosity of the melt. Both melt viscosity and H 2 O diffusivity have non-linear dependence on the concentration of H 2 O dissolved in the melt, which necessitates a numerical approach to modelling bubble growth. Several bubble growth models have previously been published and applied, but none of them has been validated against continuous, in situ experimental data or provided as a user-friendly tool. Here we present a numerical bubble growth model, implemented in MATLAB, which allows for arbitrary temperature and pressure pathways, and accounts for the impact of spatial variations in dissolved H 2 O concentration on viscosity and diffusivity. We validate the model against two sets of experimental data: (1) New continuous data for gas-volume fraction as a function of time, collected using optical dilatometry of vesiculating hydrous obsidian samples which were heated from 930 °C to 1000 °C at atmospheric pressure. This dataset captures isobaric, isothermal bubble growth under strongly disequilibrium conditions. (2) Discrete data from published decompression experiments at 825 °C and pressures from 200 MPa to ~5 MPa with decompression rates from 0.1 MPa s−1 to 10 MPa s−1. These experiments represent isothermal, decompression-driven bubble growth spanning equilibrium to strongly disequilibrium conditions. The numerical model closely reproduces the experimental data across all conditions, providing validation against contrasting bubble growth scenarios. The validated model has a wide range of potential volcanological applications, including forward modelling of bubble growth phenomena, and inverse modelling to reconstruct pressure–temperature–time pathways from textures and volatile contents of eruptive products. • Flexible and general numerical model for bubble growth in magma available for download • Model validated against in-situ and decompression experiments across a range of disequilibrium conditions • Model suitable for predicting bubble growth under arbitrary pressure-temperature-time pathways • Extendable and user-configurable to include material models (solubility, diffusivity, viscosity) for different compositions [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03770273
- Volume :
- 402
- Database :
- Academic Search Index
- Journal :
- Journal of Volcanology & Geothermal Research
- Publication Type :
- Academic Journal
- Accession number :
- 145205982
- Full Text :
- https://doi.org/10.1016/j.jvolgeores.2020.107002