Back to Search Start Over

Microstructure and strength of brazed joints of Ti3Al-base alloy with NiCrSiB

Authors :
He, P.
Feng, J.C.
Zhou, H.
Source :
Materials Characterization. Jul2004, Vol. 52 Issue 4/5, p309-318. 10p.
Publication Year :
2004

Abstract

Brazing of Ti3Al alloys with the filler metal NiCrSiB was carried out at 1273–1373 K for 60–1800 s. The relationship of brazing parameters and shear strength of the joints was discussed, and the optimum brazing parameters were obtained. When products are brazed, the optimum brazing parameters are as follows: brazing temperature is 1323–1373 K, brazing time is 250–300 s. The maximum shear strength of the joint is 240–250 MPa. Three kinds of reaction products were observed to have formed during the brazing of Ti3Al alloys with the filler metal NiCrSiB, namely, TiAl3 (TiB2) intermetallic compounds formed close to the Ti3Al alloy. TiAl3+AlNi2Ti (TiB2) intermetallic compounds layer formed between TiAl3 (TiB2) intermetallic compounds and the filler metal and a Ni[s,s] solid solution formed in the middle of the joint. The interfacial structure of brazed Ti3Al alloy joints with the filler metal NiCrSiB is Ti3Al/TiAl3 (TiB2)/TiAl3+AlNi2Ti (TiB2)/Ni[s,s] solid solution/TiAl3+AlNi2Ti (TiB2)/TiAl3 (TiB2)/Ti3Al, and this structure will not change with brazing time once it forms. The formation of over many intermetallic compounds TiAl3+AlNi2Ti (TiB2) results in embrittlement of the joint and poor joint properties. The thickness of TiAl3+AlNi2Ti (TiB2) intermetallic compounds increases with brazing time according to a parabolic law. The activation energy Q and the growth velocity K0 of the reaction layer TiAl3+AlNi2Ti (TiB2) in the brazed joints of Ti3Al alloys with the filler metal NiCrSiB are 349 kJ/mol and 24.02 mm2/s, respectively, and the growth formula was y2=24.04exp(−41977.39/T)t. Careful control of the growth of the reaction layer TiAl3+AlNi2Ti (TiB2) can influence the final joint strength. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
10445803
Volume :
52
Issue :
4/5
Database :
Academic Search Index
Journal :
Materials Characterization
Publication Type :
Academic Journal
Accession number :
14512994
Full Text :
https://doi.org/10.1016/j.matchar.2004.06.005