Back to Search Start Over

Targeting steroid receptor RNA activator (SRA), a long non-coding RNA, enhances melanogenesis through activation of TRP1 and inhibition of p38 phosphorylation.

Authors :
Ho, Ji-Chen
Lee, Chih-Hung
Hong, Chien-Hui
Source :
PLoS ONE. 8/13/2020, Vol. 15 Issue 8, p1-12. 12p.
Publication Year :
2020

Abstract

Abnormal skin melanin homeostasis results in refractory pigmentary diseases. Melanogenesis is influenced by gene regulation, ultraviolet radiation, and host epigenetic responses. Steroid receptor RNA activator (SRA), a long noncoding RNA, is known to regulate steroidogenesis and tumorigenesis. However, how SRA contributes to melanogenesis remains unknown. Using RNA interference against SRA in B16 and A375 melanoma cells, we observed increased pigmentation and increased expression of TRP1 and TRP2 at transcriptional and translational levels only in B16 cells. The constitutive phosphorylation of p38 in B16-shCtrl cells was inhibited in cells with knocked down SRAi. Moreover, the melanin content of control B16 cells was increased by SB202190, a p38 inhibitor. Furthermore, reduced p38 phosphorylation, enhanced TRP1 expression, and hypermelanosis were observed in A375 cells with RNA interference. These results indicate that SRA-p38-TRP1 axis has a regulatory role in melanin homeostasis and that SRA might be a potential therapeutic target for treating pigmentary diseases. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
15
Issue :
8
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
145106383
Full Text :
https://doi.org/10.1371/journal.pone.0237577