Back to Search Start Over

Herglotz' variational principle and Lax-Oleinik evolution.

Authors :
Cannarsa, Piermarco
Cheng, Wei
Jin, Liang
Wang, Kaizhi
Yan, Jun
Source :
Journal de Mathematiques Pures et Appliquees. Sep2020, Vol. 141, p99-136. 38p.
Publication Year :
2020

Abstract

We develop an elementary method to give a Lipschitz estimate for the minimizers in the problem of Herglotz' variational principle proposed in the paper (P. Cannarsa, W. Cheng, K. Wang, J. Yan, 2019 [17]) in the time-dependent case. We deduce Erdmann's condition and the Euler-Lagrange equation separately under different sets of assumptions, by using a generalized du Bois-Reymond lemma. As an application, we obtain a representation formula for the viscosity solution of the Cauchy problem for the Hamilton-Jacobi equation D t u (t , x) + H (t , x , D x u (t , x) , u (t , x)) = 0 and study the related Lax-Oleinik evolution. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00217824
Volume :
141
Database :
Academic Search Index
Journal :
Journal de Mathematiques Pures et Appliquees
Publication Type :
Academic Journal
Accession number :
145069861
Full Text :
https://doi.org/10.1016/j.matpur.2020.07.002