Back to Search
Start Over
Herglotz' variational principle and Lax-Oleinik evolution.
- Source :
-
Journal de Mathematiques Pures et Appliquees . Sep2020, Vol. 141, p99-136. 38p. - Publication Year :
- 2020
-
Abstract
- We develop an elementary method to give a Lipschitz estimate for the minimizers in the problem of Herglotz' variational principle proposed in the paper (P. Cannarsa, W. Cheng, K. Wang, J. Yan, 2019 [17]) in the time-dependent case. We deduce Erdmann's condition and the Euler-Lagrange equation separately under different sets of assumptions, by using a generalized du Bois-Reymond lemma. As an application, we obtain a representation formula for the viscosity solution of the Cauchy problem for the Hamilton-Jacobi equation D t u (t , x) + H (t , x , D x u (t , x) , u (t , x)) = 0 and study the related Lax-Oleinik evolution. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00217824
- Volume :
- 141
- Database :
- Academic Search Index
- Journal :
- Journal de Mathematiques Pures et Appliquees
- Publication Type :
- Academic Journal
- Accession number :
- 145069861
- Full Text :
- https://doi.org/10.1016/j.matpur.2020.07.002