Back to Search Start Over

Design of a tuned vibration absorber for a slender hollow cylindrical structure.

Authors :
Aksoy, Tuğrul
Özgen, Gökhan Osman
Acar, Bülent
Source :
Mechanics Based Design of Structures & Machines. 2020, Vol. 48 Issue 5, p615-648. 34p.
Publication Year :
2020

Abstract

In this paper, details of the design work for a tuned vibration absorber to be used on a hollow cylindrical structure is presented. The vibration problem is of resonant type and the tuned vibration absorber is designed to suppress the displacement vibration response of the free end of the slender hollow structure dominated by the contribution of its lowest transverse vibration modes. The structure is modeled using a commercial finite element software. Finite element model of the structure is verified using experimentally obtained frequency response functions and modal parameters. Effective parameters of the tuned vibration absorber design are then determined based on finite element analysis simulations of the vibration suppression performance of the tuned vibration absorber as it is used on the structure. Details of the tuned vibration absorber design are determined and a prototype is fabricated. Prototype tuned vibration absorber is then characterized experimentally both as a standalone system and also as it is used on the main structure. Vibration reduction performance of the physical prototype of the tuned vibration absorber is also compared with its vibration reduction performance estimated from finite element analysis simulations so that the analysis based design process can be validated. Communicated by Dumitru Caruntu. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15397734
Volume :
48
Issue :
5
Database :
Academic Search Index
Journal :
Mechanics Based Design of Structures & Machines
Publication Type :
Academic Journal
Accession number :
145042108
Full Text :
https://doi.org/10.1080/15397734.2019.1657889