Back to Search Start Over

Fully discrete explicit locally entropy-stable schemes for the compressible Euler and Navier–Stokes equations.

Authors :
Ranocha, Hendrik
Dalcin, Lisandro
Parsani, Matteo
Source :
Computers & Mathematics with Applications. Sep2020, Vol. 80 Issue 5, p1343-1359. 17p.
Publication Year :
2020

Abstract

Recently, relaxation methods have been developed to guarantee the preservation of a single global functional of the solution of an ordinary differential equation. Here, we generalize this approach to guarantee local entropy inequalities for finitely many convex functionals (entropies) and apply the resulting methods to the compressible Euler and Navier–Stokes equations. Based on the unstructured h p -adaptive SSDC framework of entropy conservative or dissipative semidiscretizations using summation-by-parts and simultaneous-approximation-term operators, we develop the first discretizations for compressible computational fluid dynamics that are primary conservative, locally entropy stable in the fully discrete sense under a usual CFL condition, explicit except for the parallelizable solution of a single scalar equation per element, and arbitrarily high-order accurate in space and time. We demonstrate the accuracy and the robustness of the fully-discrete explicit locally entropy-stable solver for a set of test cases of increasing complexity. • Generalization of the relaxation methods to guarantee local entropy inequalities. • Application to an h p -adaptive compressible Navier–Stokes solver. • Arbitrarily high-order accurate in space and time discretizations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08981221
Volume :
80
Issue :
5
Database :
Academic Search Index
Journal :
Computers & Mathematics with Applications
Publication Type :
Academic Journal
Accession number :
144893087
Full Text :
https://doi.org/10.1016/j.camwa.2020.06.016