Back to Search Start Over

Investigation of sandwich composite failure under three-point bending: Simulation and experimental validation.

Authors :
Anandan, Sudharshan
Dhaliwal, Gurjot
Ganguly, Shouvik
Chandrashekhara, K
Source :
Journal of Sandwich Structures & Materials. Sep2020, Vol. 22 Issue 6, p1838-1858. 21p.
Publication Year :
2020

Abstract

A sandwich structure consists of a two thin and strong facesheets, bonded to a thick lightweight core material. The mechanical response of a sandwich structure depends on the properties of its constituents. A numerical model and experimental validation of the three-point bending test of sandwich composites are presented in this study. The core material is aluminum honeycomb. The facesheets are made of IM7/Cycom5320-1, which is a carbon fiber/epoxy prepreg system. A comprehensive model of the failure under flexural loading was developed. Facesheet failure was modeled using Hashin's failure criteria. A detailed meso-scale model of the honeycomb core was included in the model. The experiments indicated that failure initiation was due to local buckling in the honeycomb core. Failure propagation was in the form of core failure, facesheet compressive failure, and interlaminar failure. The developed meso-scale model was able to accurately simulate failure initiation and propagation in the composite sandwich structure. The effect of elevated temperature on the three-point bending behavior was studied numerically as well as experimentally. An increase in test temperature to 100°C resulted in a drop of 9.2% in flexural strength, which was also predicted by the numerical model. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10996362
Volume :
22
Issue :
6
Database :
Academic Search Index
Journal :
Journal of Sandwich Structures & Materials
Publication Type :
Academic Journal
Accession number :
144872165
Full Text :
https://doi.org/10.1177/1099636218791162