Back to Search Start Over

Functional methods for Heavy Quark Effective Theory.

Authors :
Cohen, Timothy
Freytsis, Marat
Lu, Xiaochuan
Source :
Journal of High Energy Physics. Jun2020, Vol. 2020 Issue 6, p1-83. 83p.
Publication Year :
2020

Abstract

We use functional methods to compute one-loop effects in Heavy Quark Effective Theory. The covariant derivative expansion technique facilitates the efficient extraction of matching coefficients and renormalization group evolution equations. This paper pro- vides the first demonstration that such calculations can be performed through the algebraic evaluation of the path integral for the class of effective field theories that are (i) constructed using a non-trivial one-to-many mode decomposition of the UV theory, and (ii) valid for non-relativistic kinematics. We discuss the interplay between operators that appear at intermediate steps and the constraints imposed by the residual Lorentz symmetry that is encoded as reparameterization invariance within the effective description. The tools presented here provide a systematic approach for computing corrections to higher order in the heavy mass expansion; precision applications include predictions for experimental data and connections to theoretical tests via lattice QCD. A set of pedagogical appendices comprehensively reviews modern approaches to performing functional calculations algebraically, and derives contributions from a term with open covariant derivatives for the first time. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
11266708
Volume :
2020
Issue :
6
Database :
Academic Search Index
Journal :
Journal of High Energy Physics
Publication Type :
Academic Journal
Accession number :
144651679
Full Text :
https://doi.org/10.1007/JHEP06(2020)164