Back to Search Start Over

ZEITLUPE facilitates the rhythmic movements of Nicotiana attenuata flowers.

Authors :
Cortés Llorca, Lucas
Li, Ran
Yon, Felipe
Schäfer, Martin
Halitschke, Rayko
Robert, Christelle A.M.
Kim, Sang‐Gyu
Baldwin, Ian T.
Source :
Plant Journal. Jul2020, Vol. 103 Issue 1, p308-322. 15p.
Publication Year :
2020

Abstract

SUMMARY: Circadian organ movements are ubiquitous in plants. These rhythmic outputs are thought to be regulated by the circadian clock and auxin signalling, but the underlying mechanisms have not been clarified. Flowers of Nicotiana attenuata change their orientation during the daytime through a 140° arc to balance the need for pollinators and the protection of their reproductive organs. This rhythmic trait is under the control of the circadian clock and results from bending and re‐straightening movements of the pedicel, stems that connect flowers to the inflorescence. Using an explant system that allowed pedicel growth and curvature responses to be characterized with high spatial and temporal resolution, we demonstrated that this movement is organ autonomous and mediated by auxin. Changes in the growth curvature of the pedicel are accompanied by an auxin gradient and dorsiventral asymmetry in auxin‐dependent transcriptional responses; application of auxin transport inhibitors influenced the normal movements of this organ. Silencing the expression of the circadian clock component ZEITLUPE (ZTL) arrested changes in the growth curvature of the pedicel and altered auxin signalling and responses. IAA19‐like, an Aux/IAA transcriptional repressor that is circadian regulated and differentially expressed between opposite tissues of the pedicel, and therefore possibly involved in the regulation of changes in organ curvature, physically interacted with ZTL. Together, these results are consistent with a direct link between the circadian clock and the auxin signalling pathway in the regulation of this rhythmic floral movement. Significance Statement: Circadian organ movements are widespread among plants. Yet, the molecular components that operate in these movements have remained unknown. Here, we demonstrate that the growth movements of the pedicel, the organ responsible for the circadian changes in orientation of Nicotiana attenuata flowers, are under the control of the circadian clock and auxin signalling; a result that opens potential avenues to investigate the relationship among different types of movements in plants. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09607412
Volume :
103
Issue :
1
Database :
Academic Search Index
Journal :
Plant Journal
Publication Type :
Academic Journal
Accession number :
144299896
Full Text :
https://doi.org/10.1111/tpj.14732