Back to Search
Start Over
Detection of tetracycline and streptomycin in beef tissues using Charm II, isolation of relevant resistant bacteria and control their resistance by gamma radiation.
- Source :
-
BMC Microbiology . 6/29/2020, Vol. 20 Issue 1, p1-11. 11p. - Publication Year :
- 2020
-
Abstract
- Background: Misuse of antibiotics in veterinary medicine has the potential to generate residues in animal derived products, which could contributing to the development of an important health risk either through the exposure to antibiotic residues or the transfer of antibiotic resistance among foodborne pathogens as well. Tetracycline (TE) and eptomycin (ST) are commonly used as antibiotics in the Egyptian animal husbandry. The objective of this study, quick detection of TE and ST in fresh local beef tissue samples using radioimmunoassay Charm II technique, isolation and identification of relevant highly resistant bacterial strains. In addition to investigating the effect of gamma radiation on the susceptibility of such resistant strains to TE and ST. Results: Tetracycline (TE) was detected in all collected samples, while ST was detected in 38.46% (5/13) and 87.5% (7/8) of meat and liver samples, respectively. Fifty-one bacterial isolates were isolated from the tested samples, among them, the highest resistant isolates to TE or ST were identified as Streptococcus thoraltensis, Proteus mirabilis (2 isolates) and E. coli (3 isolates). Among them, the highest D10-values in phosphate buffer; 0.807 and 0.480; kGy were recorded with S. thoraltensis and E. coli no.3, respectively. Such values increased to record 0.840 and 0.549 kGy, respectively after artificial inoculation into meat, indicating increased resistance to gamma radiation. Gamma radiation at dose 3 kGy increased the susceptibility of S. thoraltensis up to 50% to TE and ST, while the sensitivity of E. coli no.3 reached up 56% to both antibiotics at the same dose. Conclusions: High prevalence of TE in all fresh collected tissue samples suggests an extensively use of TE as antimicrobial in conventional beef production as compared to ST in the Egyptian cows' husbandry. Moreover, irradiation of food from animal origin by gamma radiation could potentially provide protection against resistant strains. In spite of limited samples used in this study, our data could raise the concerns of public health professionals about a withdrawal period before animals slaughtering, and address the importance of gamma radiation to minimize the hazards of foodborne resistant bacteria. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14712180
- Volume :
- 20
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- BMC Microbiology
- Publication Type :
- Academic Journal
- Accession number :
- 144295937
- Full Text :
- https://doi.org/10.1186/s12866-020-01868-7