Back to Search
Start Over
An Ore-type condition for large k-factor and disjoint perfect matchings.
- Source :
-
Journal of Graph Theory . Jul2020, Vol. 94 Issue 3, p307-319. 13p. - Publication Year :
- 2020
-
Abstract
- Win conjectured that a graph G on n vertices contains k disjoint perfect matchings, if the degree sum of any two nonadjacent vertices is at least n + k - 2, where n is even and n ≥ k + 2. In this paper, we prove that Win's conjecture is true for k ≥ n/2, where n is sufficiently large. To show this result, we prove a theorem on k-factor in a graph under some Ore-type condition. Our main tools include Tutte's k-factor theorem, the Karush-Kuhn-Tucker theorem on convex optimization and the solution to the long-standing 1-factor decomposition conjecture. [ABSTRACT FROM AUTHOR]
- Subjects :
- *HAMILTONIAN graph theory
*REGULAR graphs
*MATCHING theory
*LOGICAL prediction
Subjects
Details
- Language :
- English
- ISSN :
- 03649024
- Volume :
- 94
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Journal of Graph Theory
- Publication Type :
- Academic Journal
- Accession number :
- 143746906
- Full Text :
- https://doi.org/10.1002/jgt.22522