Back to Search Start Over

Meta-analysis of seasonal dynamics of parasite infections in aquatic ecosystems.

Authors :
Poulin, Robert
Source :
International Journal for Parasitology. Jun2020, Vol. 50 Issue 6/7, p501-510. 10p.
Publication Year :
2020

Abstract

• Parasite infections often peak in certain seasons in aquatic ecosystems. • Meta-analysis of 693 seasonal infection contrasts reveals no universal pattern. • Taxon-specific patterns rule among winter-summer and wet-dry season infection dynamics. • The same parasite taxa show contrasting patterns between freshwater and marine habitats. • Sensitivity to abiotic conditions therefore varies widely among host-parasite systems. Seasonal infection dynamics characterise many host-parasite interactions, as abiotic conditions drive fundamental biological processes in both hosts and parasites. The extent to which seasonal cycles in parasite abundance are universal, and whether the same underlying mechanisms are responsible for seasonality across different host-parasite associations, have received little attention to date. Here, global patterns of seasonal infection dynamics are tested using a meta-analysis of 693 seasonal contrasts in the local abundance of metazoan parasites in aquatic vertebrates, representing 343 parasite species and 148 host species. These include both contrasts between winter and summer in temperate systems, and between wet and dry seasons in tropical systems. Overall, the analysis found no evidence that seasonal infection dynamics are universal, nor that they are controlled by the same factors. More specifically, the results indicate no overall effect of the magnitude of local seasonal differences in abiotic conditions (temperature or precipitation), type of host (amphibian or fish), habitat (freshwater, coastal marine or deep-sea), host body length, or mode of transmission (skin contact or trophic) on the extent of seasonal differences in parasite infections. Instead, the results revealed many clear taxon-specific or habitat-specific patterns of seasonal infection dynamics, with some parasite or host taxa generally showing distinct peaks in infections in summer or dry seasons, and others showing no seasonal changes. The present findings serve to identify empirically which host-parasite associations are most likely to respond to changing climatic conditions, and thus provide useful information for fisheries and aquaculture. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00207519
Volume :
50
Issue :
6/7
Database :
Academic Search Index
Journal :
International Journal for Parasitology
Publication Type :
Academic Journal
Accession number :
143702421
Full Text :
https://doi.org/10.1016/j.ijpara.2020.03.006