Back to Search Start Over

Force Density Limits in Low-Speed PM Machines Due to Temperature and Reactance.

Authors :
Grauers, Anders
Kasinathan, Prakashraj
Source :
IEEE Transactions on Energy Conversion. Sep2004, Vol. 19 Issue 3, p518-525. 8p.
Publication Year :
2004

Abstract

This paper discusses two of the mechanisms that limit the attainable force density in slotted low-speed permanent-magnet (PM) electric machines. Most of the interest is focused on the force density limits imposed by heating of the windings and by stator reactance. The study is based on analytical models for the force and reactance calculations and a lumped parameter thermal model. It is found that in a machine with an indirectly cooled stator, it is difficult to achieve a force density greater than 100 kN/m2 due to temperature limits. A high force density Is achieved by using deep slots, which lead to high reactance. The high reactance severely increases the converter kilovolt-ampere requirement and total system cost. It is also shown that the cost caused by the high reactance will also limit the force density reached. In machines with one slot per pole per phase, the reactance limited the useful slot depth to approximately 200 mm. However, in machines having a greater number of slots per pole per phase the reactance becomes no longer an Important limiting factor for the slot depth and force density. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08858969
Volume :
19
Issue :
3
Database :
Academic Search Index
Journal :
IEEE Transactions on Energy Conversion
Publication Type :
Academic Journal
Accession number :
14370079
Full Text :
https://doi.org/10.1109/TEC.2004.832059