Back to Search Start Over

A path recorder algorithm for Multiple Longest Common Subsequences (MLCS) problems.

Authors :
Wei, Shiwei
Wang, Yuping
Yang, Yuanchao
Liu, Sen
Source :
Bioinformatics. 05/15/2020, Vol. 36 Issue 10, p3035-3042. 8p.
Publication Year :
2020

Abstract

Motivation Searching the Longest Common Subsequences of many sequences is called a Multiple Longest Common Subsequence (MLCS) problem which is a very fundamental and challenging problem in many fields of data mining. The existing algorithms cannot be applicable to problems with long and large-scale sequences due to their huge time and space consumption. To efficiently handle large-scale MLCS problems, a Path Recorder Directed Acyclic Graph (PRDAG) model and a novel Path Recorder Algorithm (PRA) are proposed. Results In PRDAG, we transform the MLCS problem into searching the longest path from the Directed Acyclic Graph (DAG), where each longest path in DAG corresponds to an MLCS. To tackle the problem efficiently, we eliminate all redundant and repeated nodes during the construction of DAG, and for each node, we only maintain the longest paths from the source node to it but ignore all non-longest paths. As a result, the size of the DAG becomes very small, and the memory space and search time will be greatly saved. Empirical experiments have been performed on a standard benchmark set of both DNA sequences and protein sequences. The experimental results demonstrate that our model and algorithm outperform the related leading algorithms, especially for large-scale MLCS problems. Availability and implementation This program code is written by the first author and can be available at https://www.ncbi.nlm.nih.gov/nuccore and https://blog.csdn.net/wswguilin. Supplementary information Supplementary data are available at Bioinformatics online. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13674803
Volume :
36
Issue :
10
Database :
Academic Search Index
Journal :
Bioinformatics
Publication Type :
Academic Journal
Accession number :
143197456
Full Text :
https://doi.org/10.1093/bioinformatics/btaa134