Back to Search Start Over

Low-Cost Nonuniform Metallic Lattice for Rectifying Aperture Near-Field of Electromagnetic Bandgap Resonator Antennas.

Authors :
Lalbakhsh, Ali
Afzal, Muhammad U.
Esselle, Karu P.
Smith, Stephanie L.
Source :
IEEE Transactions on Antennas & Propagation. May2020, Vol. 68 Issue 5, p3328-3335. 8p.
Publication Year :
2020

Abstract

This article addresses a critical issue, which has been overlooked, in relation to the design of phase-correcting structures (PCSs) for electromagnetic bandgap (EBG) resonator antennas (ERAs). All the previously proposed PCSs for ERAs are made using either several expensive radio frequency (RF) dielectric laminates or thick and heavy dielectric materials, contributing to very high fabrication cost, posing an industrial impediment to the application of ERAs. This article presents a new industrial-friendly generation of PCS, in which dielectrics, known as the main cause of high manufacturing cost, are removed from the PCS configuration, introducing an all-metallic PCS (AMPCS). Unlike existing PCSs, a hybrid topology of fully metallic spatial phase shifters are developed for the AMPCS, resulting in an extremely lower prototyping cost as that of other state-of-the-art substrate-based PCSs. The APMCS was fabricated using laser technology and tested with an ERA to verify its predicted performance. The results show that the phase uniformity of the ERA aperture has been remarkably improved, resulting in 8.4 dB improvement in the peak gain of the antenna and improved sidelobe levels (SLLs). The antenna system including APMCS has a peak gain of 19.42 dB with a 1 dB gain bandwidth of around 6%. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0018926X
Volume :
68
Issue :
5
Database :
Academic Search Index
Journal :
IEEE Transactions on Antennas & Propagation
Publication Type :
Academic Journal
Accession number :
143174277
Full Text :
https://doi.org/10.1109/TAP.2020.2969888