Back to Search Start Over

Experimental Investigation on Pool Boiling Heat Transfer Performance Using Tungsten Oxide WO3 Nanomaterial-Based Water Nanofluids.

Authors :
Kamel, Mohammed Saad
Lezsovits, Ferenc
Source :
Materials (1996-1944). Apr2020, Vol. 13 Issue 8, p1922. 1p. 5 Diagrams, 8 Graphs.
Publication Year :
2020

Abstract

This study aims to experimentally investigate the pool boiling heat transfer coefficient behavior using tungsten oxide-based deionized water nanofluids and comparing them to deionized water as conventional fluid. The influence of different dilute volumetric concentrations (0.005%–0.05% Vol.) and applied heat fluxes were examined to see the effect of these parameters on the pool boiling heat transfer performance using nanofluids from a typical horizontal heated copper tube at atmospheric pressure conditions. Results demonstrated that the pool boiling heat transfer coefficient (PBHTC) for both deionized water and nanofluids increased with increasing the applied heat flux. The higher PBHTC enhancement ratio was 6.7% for a volume concentration of 0.01% Vol. at a low heat flux compared to the deionized water case. Moreover, the PBHTC for nanofluids was degraded compared to the deionized water case, and the maximum reduction ratio was about 15% for a volume concentration of 0.05% Vol. relative to the baseline case. The reduction in PBHTC was attributed to the deposition of tungsten oxide nanoflakes on the heating surface during the boiling process, which led to a decrease in the density of the nucleation sites. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
13
Issue :
8
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
143077526
Full Text :
https://doi.org/10.3390/ma13081922