Back to Search
Start Over
A CONDITIONAL DENSITY FOR CARMICHAEL NUMBERS.
- Source :
-
Bulletin of the Australian Mathematical Society . Jun2020, Vol. 101 Issue 3, p379-388. 10p. - Publication Year :
- 2020
-
Abstract
- Under sufficiently strong assumptions about the first prime in an arithmetic progression, we prove that the number of Carmichael numbers up to $X$ is $\gg X^{1-R}$ , where $R=(2+o(1))\log \log \log \log X/\text{log}\log \log X$. This is close to Pomerance's conjectured density of $X^{1-R}$ with $R=(1+o(1))\log \log \log X/\text{log}\log X$. [ABSTRACT FROM AUTHOR]
- Subjects :
- *ARITHMETIC series
*DENSITY
Subjects
Details
- Language :
- English
- ISSN :
- 00049727
- Volume :
- 101
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Bulletin of the Australian Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 143005103
- Full Text :
- https://doi.org/10.1017/S000497271900145X