Back to Search
Start Over
Organochlorine pesticides contaminated soil decontamination using TritonX-100-enhanced advanced oxidation under electrokinetic remediation.
- Source :
-
Journal of Hazardous Materials . Jul2020, Vol. 393, pN.PAG-N.PAG. 1p. - Publication Year :
- 2020
-
Abstract
- • Real OCPs contaminated soil cleanup can be achieved by surfactant-enhanced electrokinetic remediation. • TritonX-100 is a reliable co-solvent for mobilizing hardly soluble OCPs and sustaining Fenton reaction in soil. • TritonX-100-advanced oxidation under electrokinetic is reliable for in situ remediation of real contaminated soil. • The use of external nZVI as oxidant activator is not necessary during the treatment of an iron rich soil. Remediation of organochlorine pesticides (OCPs)-contaminated soils is urgently required especially in China. Surfactants have emerged as reliable and efficient co-solvent for the treatment of hardly soluble organic pollutants in contaminated soil. Here, we report the use of TritonX-100 (TX-100) in advanced oxidation under electrokinetic technology (EK) for OCPs removal from a historically contaminated soil from a former pharmaceutical industrial wasteland. Result shows that TX-100 (10%) played a key role in soil remediation. In effect, after a treatment period of 15 days, pollutants washed ranged from 50.68% (4,4'-DDT) to 76.07% (HCB), when TX-100 was used as the electrolyte (EK-TX-100). A simple advanced oxidation of the soil using sodium persulfate (PS) under EK approach (EK-PS) was limited to achieve good removal efficiency of the pollutants; as the result of OCPs' hardly dissolvable nature. The achieved removal efficiency were comprised between 22.62% (2,4-DDT) and 55.78% (1,2,4,5-TCB). With the application of TX-100 as co-solvent (EK-TX-100/PS), the pollutants removal efficiency significantly improved (p < 0.05). The treatment efficiency was shifted and up to 88.05% (1,2,4-TCB) was achieved, while the lowest removal efficiency was 56.36% (4,4'-DDE). We come to the conclusion that the use of TX-100-enhanced advanced oxidation (EK-TX-100/PS) as a reliable treatment for remediating organochlorine contaminated soil. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03043894
- Volume :
- 393
- Database :
- Academic Search Index
- Journal :
- Journal of Hazardous Materials
- Publication Type :
- Academic Journal
- Accession number :
- 142930650
- Full Text :
- https://doi.org/10.1016/j.jhazmat.2020.122388