Back to Search Start Over

Physics driven real-time blood flow simulations.

Authors :
Sankaran, Sethuraman
Lesage, David
Tombropoulos, Rhea
Xiao, Nan
Kim, Hyun Jin
Spain, David
Schaap, Michiel
Taylor, Charles A.
Source :
Computer Methods in Applied Mechanics & Engineering. Jun2020, Vol. 364, pN.PAG-N.PAG. 1p.
Publication Year :
2020

Abstract

Predictive modeling of blood flow and pressure have numerous applications ranging from non-invasive assessment of functional significance of disease to planning invasive procedures. While several such predictive modeling techniques have been proposed, their use in the clinic has been limited due in part to the significant time required to perform virtual interventions and compute the resultant changes in hemodynamic conditions. We propose a fast hemodynamic assessment method to aid in interventional planning based on first constructing an exploration space of geometries, tailored to each patient, and subsequently building a physics driven reduced order model in this space. We demonstrate that this method can predict fractional flow reserve derived from coronary computed tomography angiography in response to changes to a patient-specific lumen geometry in real time while achieving high accuracy when compared to computational fluid dynamics simulations. We validated this method on over 1300 patients that received a coronary CT scan and demonstrated a correlation coefficient of 0.98 with an error of 0. 005 ± 0. 015 (95% CI: (-0.020, 0.031)) as compared to three-dimensional blood flow calculations. This technology is implemented in a product that has received clearance by the U.S. Food and Drug Administration and is being used clinically to enable physicians to predict changes in blood flow resulting from removal of coronary stenoses as might occur with percutaneous coronary interventions. This technology is also cleared for use in Japan and pending regulatory approval in Europe. • A patient-specific reduced order model (PSROM) was developed and validated. • The method was demonstrated to be equivalent to CFD simulations. • The method is implemented in a product that is cleared by the FDA. • Good comparison was demonstrated against invasive clinical data. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00457825
Volume :
364
Database :
Academic Search Index
Journal :
Computer Methods in Applied Mechanics & Engineering
Publication Type :
Academic Journal
Accession number :
142851489
Full Text :
https://doi.org/10.1016/j.cma.2020.112963