Back to Search Start Over

A new approach to monitor 13C-targets degradation in situ for 13C(α,n)16O cross-section measurements at LUNA.

Authors :
Ciani, G. F.
Csedreki, L.
Balibrea-Correa, J.
Best, A.
Aliotta, M.
Barile, F.
Bemmerer, D.
Boeltzig, A.
Broggini, C.
Bruno, C. G.
Caciolli, A.
Cavanna, F.
Chillery, T.
Colombetti, P.
Corvisiero, P.
Davinson, T.
Depalo, R.
Di Leva, A.
Di Paolo, L.
Elekes, Z.
Source :
European Physical Journal A -- Hadrons & Nuclei. Mar2020, Vol. 56 Issue 3, p1-10. 10p.
Publication Year :
2020

Abstract

Direct measurements of reaction cross-sections at astrophysical energies often require the use of solid targets able to withstand high ion beam currents for extended periods of time. Thus, monitoring target thickness, isotopic composition, and target stoichiometry during data taking is critical to account for possible target modifications and to reduce uncertainties in the final cross-section results. A common technique used for these purposes is the Nuclear Resonant Reaction Analysis (NRRA), which however requires that a narrow resonance be available inside the dynamic range of the accelerator used. In cases when this is not possible, as for example the 13 C (α , n) 16 O reaction recently studied at low energies at the Laboratory for Underground Nuclear Astrophysics (LUNA) in Italy, alternative approaches must be found. Here, we present a new application of the shape analysis of primary γ rays emitted by the 13 C (p , γ) 14 N radiative capture reaction. This approach was used to monitor 13 C target degradation in situ during the 13 C (α , n) 16 O data taking campaign. The results obtained are in agreement with evaluations subsequently performed at Atomki (Hungary) using the NRRA method. A preliminary application for the extraction of the 13 C (α , n) 16 O reaction cross-section at one beam energy is also reported. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14346001
Volume :
56
Issue :
3
Database :
Academic Search Index
Journal :
European Physical Journal A -- Hadrons & Nuclei
Publication Type :
Academic Journal
Accession number :
142763723
Full Text :
https://doi.org/10.1140/epja/s10050-020-00077-0