Back to Search Start Over

Preparation of nanoliposomes by microfluidic mixing in herring-bone channel and the role of membrane fluidity in liposomes formation.

Authors :
Kotouček, Jan
Hubatka, František
Mašek, Josef
Kulich, Pavel
Velínská, Kamila
Bezděková, Jaroslava
Fojtíková, Martina
Bartheldyová, Eliška
Tomečková, Andrea
Stráská, Jana
Hrebík, Dominik
Macaulay, Stuart
Kratochvílová, Irena
Raška, Milan
Turánek, Jaroslav
Source :
Scientific Reports. 3/27/2020, Vol. 10 Issue 1, p1-11. 11p.
Publication Year :
2020

Abstract

Introduction of microfluidic mixing technique opens a new door for preparation of the liposomes and lipid-based nanoparticles by on-chip technologies that are applicable in a laboratory and industrial scale. This study demonstrates the role of phospholipid bilayer fragment as the key intermediate in the mechanism of liposome formation by microfluidic mixing in the channel with "herring-bone" geometry used with the instrument NanoAssemblr. The fluidity of the lipid bilayer expressed as fluorescence anisotropy of the probe N,N,N-Trimethyl-4-(6-phenyl-1,3,5-hexatrien-1-yl) was found to be the basic parameter affecting the final size of formed liposomes prepared by microfluidic mixing of an ethanol solution of lipids and water phase. Both saturated and unsaturated lipids together with various content of cholesterol were used for liposome preparation and it was demonstrated, that an increase in fluidity results in a decrease of liposome size as analyzed by DLS. Gadolinium chelating lipids were used to visualize the fine structure of liposomes and bilayer fragments by CryoTEM. Experimental data and theoretical calculations are in good accordance with the theory of lipid disc micelle vesiculation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
10
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
142435752
Full Text :
https://doi.org/10.1038/s41598-020-62500-2