Back to Search Start Over

Determination of critical salinity of pitting and uniform corrosion of X60 under CO2-O2 coexistence environment.

Authors :
Dong, BaoJun
Liu, Wei
Wu, Fei
Zhu, JiaQi
Wongpat, Banthukul
Zhao, Yonggang
Fan, Yueming
Zhang, TianYi
Source :
Anti-Corrosion Methods & Materials. 2020, Vol. 67 Issue 2, p166-177. 12p.
Publication Year :
2020

Abstract

Purpose: The salinity of the oilfield produced water has a significant effect on steel corrosion. The purpose of this paper is to study the influence of salinity on corrosion behavior of X60 steel and it also provides basic for material selection of gas wells with high salinity. Design/methodology/approach: The weight loss experiment was carried out on steel with high temperature and high pressure autoclave. The surface morphology and composition of corrosion scales were studied by means of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry. Findings: The results show that as salinity increases, the corrosion rate of X60 steel will gradually experience a rapid decline stage and then a slow decline stage. X60 steel is mainly exhibiting uniform corrosion in the first rapid decline stage and pitting corrosion in the second slow decline stage. The increase in salinity reduces gas solubility, which, in turn, changes the morphology and density of the corrosion scales of X60 steel. At low salinity, loose iron oxides generated on the surface of the steel, which poorly protects the substrate. At high salinity, surface of the steel gradually forms protective films. Chloride ions in the saline solution mainly affect the structure of the corrosion scales and initiate pitting corrosion. The increased chloride ions lead to more pitting pits on the surface of steel. The recrystallization of FeCO3 in pitting pits causes the corrosion scales to bulge. Originality/value: The investigation determined the critical concentration of pitting corrosion and uniform corrosion of X60 steel, and the new corrosion mechanism model was presented. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00035599
Volume :
67
Issue :
2
Database :
Academic Search Index
Journal :
Anti-Corrosion Methods & Materials
Publication Type :
Academic Journal
Accession number :
142169100
Full Text :
https://doi.org/10.1108/ACMM-06-2019-2147