Back to Search Start Over

Conceptual design of CFETR divertor supporting structures based on DOF and stability theories for the remote handling requirements.

Authors :
Dai, Huaichu
Lv, Gang
Qin, Qiang
Source :
Fusion Engineering & Design. Apr2020, Vol. 153, pN.PAG-N.PAG. 1p.
Publication Year :
2020

Abstract

• A new approach to the CFETR divertor RH compatible structures is put forward based on the DOF and the stability theories. • DOF and stability for the divertor are analyzed to prove that the newly-design scheme is feasible. • CFETR divertor RH maintenance simulation process is carried on in Delmia to validate RH feasibility. The divertor area of China Fusion Engineering Test Reactor (CFETR) vacuum vessel (VV) consists of 48 modular cassettes which must be replaced during operation of the CFETR. Considering the working environment for the divertor in Tokamak, the process for replacing is conducted by remote handling (RH) ways. In this paper, the work mainly focuses on the development of a new approach to the conceptual design of CFETR Divertor RH compatible structures. The approach is based on two theories: degree of freedom (DOF) and the stability.DOF theory requires the divertor should be constraint completely, and then its DOF is equal to zero. Besides that, the stability theory requires the divertor cannot be shaken due to the projection of the centre of mass and cannot be rotated due to the larger tilting moment. Then a new design scheme for the compatible structures is put forward based on theories to fulfill the working requirements. Finally, the simulation process in Delmia is carried on in order to validate the RH feasibility. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09203796
Volume :
153
Database :
Academic Search Index
Journal :
Fusion Engineering & Design
Publication Type :
Academic Journal
Accession number :
142001184
Full Text :
https://doi.org/10.1016/j.fusengdes.2020.111476